The number of common tangents to circle x2+y2+2x+8y−23=0 and x2+y2−4x−10y+9=0, is.
S1:x2+y2+2x+8y–23=0
C1=(−1,−4),r21=√(−1)2+(−4)2+23=2√10
S2:x2+y2−4x−10y+9=0
C2=(2,5),r22=√(2)2+(5)2−9=2√5
C1C2=√32+92=√90=3√10
r1+r2=2√10+2√5=√10(2+√2)
3√10<(2+√2)√10
⟹C1C2<r1+r2
|r1–r2|=(2−√2)√10
3√10>(2−√2)√10
|r1–r2|<C1C2<r1+r2
Only 2 common tangents.