The number of complex numbers p such that |p|=1 and imaginary part of p4 is 0 , is
imaginary part of p4=0
Let P=x+iy
⇒p2=x2−y2+2ixy
⇒p4=(x2−y2)2−4x2y2+4ixy(x2−y2)
It is given that, imaginary part of p4 is zero.
⇒4ixy(x2−y2)=0
⇒x2−y2=0
⇒x=±y
Now from equation (1)
|p|=1
⇒√x2+y2=1
⇒√y2+y2=1
⇒2y2=1
⇒y=±1√2
i.e., there are four complex numbers satisfies the given conditions.
(or)
Given:
|p|=1, imaginary part of p4=0i.e circle with centre (0,0) & radius =1
A=(1,0)B=(0,1)C=(−1,0)D=(0−1)
E=1(cosπ4+isinπ4)=1√2+i√2
⇒E4=(cos4π4+isin4π4)
⇒E4=cosπ+isinπF=(cos3π4+isin3π4)G=cos(−3π4)+isin(−3π4)H=cos(−π4)+isin(−π4)i.e 4