The correct option is C 2
(x2+6)2−35x2=2x(x2+6)
⇒x2+6x−35(xx2+6)=2
Let x2+6x=t
Then, t−35t=2
⇒t2−2t−35=0
⇒(t−7)(t+5)=0
⇒t=7 or t=−5
⇒x2−7x+6=0 or x2+5x+6=0
⇒x=1,6 or x=−2,−3
∴ Roots of given equations are −3,−2,1,6
Hence, the number of distinct positive real roots is 2.