The number of distinct primes dividing 12!+13!+14! is
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2