The correct option is C 1
∣∣
∣∣sin xcos xcos xcos xsin xcos xcos xcos xsin x∣∣
∣∣=0
⇒cos3x∣∣
∣∣tan x111tan x111tan x∣∣
∣∣=0
⇒cos3x(tanx−1)2(tanx+2)=0
⇒cosx=0,tanx=1,tanx=−2
cosx≠0 for any x∈[−π4,π4]
and tanx≠−2 for any x∈[−π4,π4]
Thus, it has only one solution x=π4 in the given interval.