The correct option is A 1
∣∣
∣∣sinxcosxcosxcosxsinxcosxcosxcosxsinx∣∣
∣∣=0
Applying C1→C1+C2+C3
∣∣
∣∣sinx+2cosxcosxcosxsinx+2cosxsinxcosxsinx+2cosxcosxsinx∣∣
∣∣=0⇒(sinx+2cosx)∣∣
∣∣1cosxcosx1sinxcosx1cosxsinx∣∣
∣∣=0
Applying R2→R2−R1,R3→R3−R1
(sinx+2cosx)∣∣
∣∣1cosxcosx0sinx−cosx000sinx−cosx∣∣
∣∣=0⇒(sinx+2cosx)(sinx−cosx)2=0
⇒2cosx+sinx=0 or sinx−cosx=0
⇒cotx=−12 gives no solution in −π4≤x≤π4
or tanx=1⇒x=π4
Hence, option 'C' is correct.