The correct option is
B 2Evaluating the determinant
△=sinx(sin2x−cos2x)−cos(x)(cosx.sinx−cos2x)+cosx(cos2x−cosx.sinx)
=sin3x−sinx.cos2x−cos2xsinx+cos3x+cos3x−cos2x.sinx
=sin3x+2cos3x−3cos2xsinx
△=0 implies
sin3x+2cos3x−3cos2xsinx=0
⟹sin(x)(sin2x−cos2x)+2cos2x(cosx−sinx)=0
⟹−sinx[(cosx+sinx)(cosx−sinx)]+2cos2x(cosx−sinx)=0
⟹(cosx−sinx)(2cos2x−sinx(cosx+sinx))=0
⟹(cosx−sinx)(2cos2(x)−sin2x−sinxcosx)=0
⟹(cosx−sinx)(2cos2(x)+cos2(x)−cos2(x)−sin2x−sinxcosx)=0
⟹(cosx−sinx)(3cos2(x)−sinxcosx−1)=0
Therefore
cosx−sinx=0 or cosx=sinx or x=π4 since x∈[−π4,π4]
And, 3cos2x−sinxcosx−1=0
⟹3cos2x−1=sinxcosx
⟹9cos4x−6cos2x+1=cos2x.sin2x ... [Squaring both sides]
⟹9cos4x−6cos2x+1=(cos2x)(1−cos2x)
⟹9cos4x−6cos2x+1=−cos4x+cos2x
⟹10cos4x−7cos2x+1=0
Therefore,
cos2(x)=12 and cos2(x)=15
cos(x)=±1√2 and cos(x)=(±1√5)
x=±π4 and x=±630
Therefore the solutions for the above equation in the interval x∈[−π4,π4] are
−450,450
Or ±π4.
Hence only 2 solutions.