wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

The number of distinct real roots of ∣ ∣sinxcosxcosxcosxsinxcosxcosxcosxsinx∣ ∣ in the interval [π4,π4] is

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 2
Evaluating the determinant
=sinx(sin2xcos2x)cos(x)(cosx.sinxcos2x)+cosx(cos2xcosx.sinx)

=sin3xsinx.cos2xcos2xsinx+cos3x+cos3xcos2x.sinx

=sin3x+2cos3x3cos2xsinx

=0 implies

sin3x+2cos3x3cos2xsinx=0

sin(x)(sin2xcos2x)+2cos2x(cosxsinx)=0

sinx[(cosx+sinx)(cosxsinx)]+2cos2x(cosxsinx)=0

(cosxsinx)(2cos2xsinx(cosx+sinx))=0

(cosxsinx)(2cos2(x)sin2xsinxcosx)=0

(cosxsinx)(2cos2(x)+cos2(x)cos2(x)sin2xsinxcosx)=0

(cosxsinx)(3cos2(x)sinxcosx1)=0

Therefore
cosxsinx=0 or cosx=sinx or x=π4 since x[π4,π4]

And, 3cos2xsinxcosx1=0

3cos2x1=sinxcosx

9cos4x6cos2x+1=cos2x.sin2x ... [Squaring both sides]

9cos4x6cos2x+1=(cos2x)(1cos2x)

9cos4x6cos2x+1=cos4x+cos2x

10cos4x7cos2x+1=0

Therefore,

cos2(x)=12 and cos2(x)=15

cos(x)=±12 and cos(x)=(±15)

x=±π4 and x=±630

Therefore the solutions for the above equation in the interval x[π4,π4] are

450,450

Or ±π4.

Hence only 2 solutions.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon