The number of distinct real roots of ∣∣
∣∣sinxcosxcosxcosxsinxcosxcosxcosxsinx∣∣
∣∣=0 in the interval −π4≤x≤π4 is
To simplify the determinant, let sinx =a; cos x =b. Then the equation becomes
∣∣
∣∣abbbabbba∣∣
∣∣=0
Operating C2→C1;C3→C3−C2, we get
∣∣
∣∣ab−a0ba−bb−ab0a−b∣∣
∣∣=0
or a(a−b)2−(b−a)[b(a−b)−b(b−a)]=0
or a(a−b)2−2b(b−a)(a−b)=0
or (a−b)2(a−2b)=0
or a=b or a =2b
or ab=1orab=2
⇒tan=1ortanx=2
But we have −π4≤tanx≤π4
⇒tan(π4)≤tanx≤tan(π4)⇒−1≤tanx≤1∴tanx=1⇒x=π4
Therefore, there is only one real root.