The number of distinct real roots of ∣∣ ∣∣sin xcos xcos xcos xsin xcos xcos xcos xsin x∣∣ ∣∣=0 in the interval −π4≤x≤π4 is
(a) 0
(b) 2
(c) 1
(d) 3
(c) We have,
∣∣
∣∣sin xcos xcos xcos xsin xcos xcos xcos xsin x∣∣
∣∣=0
Applying C1→C1+C2+C3
∣∣
∣∣2 cos x+sin xcos xcos x2 cos x+sin xsin xcos x2 cos x+sin xcos xsin x∣∣
∣∣=0
On taking (2 cos x+sin x) common from C1, we get
⇒(2 cos x+sin x)∣∣
∣∣1cos xcos x1sin xcos x1cos xsin x∣∣
∣∣=0⇒(2 cos x+sin x)∣∣
∣∣1cos xcos x0sin x−cos x000(sin x−cos x)∣∣
∣∣=0
[∵R2→R2−R1 and R3→R3−R1]
Expanding along C1,
(2 cos x+sin x)[1.(sin x−cos x)2]=0⇒(2 cos x+sin x)(sin x−cos x)2=0
Either 2 cos x=−sin x
⇒cos x=−12sin x
⇒tan x=−2 ..... (ii)
But here for −π4≤x≤π4,we get−1≤tan x≤1 so, no solution possible
and for (sin x−cos x)2=0, sin x=cos x
⇒tan x=1=tan π4∴x=π4
So, only one distinct real root exist.