The number of distinct real roots of equation 3x4+4x3−12x2+4=0 is
Open in App
Solution
Let f(x)=3x4+4x3−12x2+4
differentiation w.r.t. x, we get ⇒f′(x)=12x3+12x2−24x ⇒f′(x)=12x(x+2)(x−1)
For max/min, f′(x)=0 ⇒x=0,−2,1 ⇒f(0)=4,f(−2)=−28,f(1)=−1
So, using intermediate value theorem on the given function, 4 real roots exist.