The correct option is
D 1Let Δ=∣∣
∣∣sinxcosxcosxcosxsinxcosxcosxcosxsinx∣∣
∣∣
Apply R1→R1−R2 and R2→R2−R3
Δ=∣∣
∣∣sinx−cosxcosx−sinx00sinx−cosxcosx−sinxcosxcosxsinx∣∣
∣∣
Let us take (sinx−cosx) as a common factor from R1 and R2
=(sinx−cosx)∣∣
∣∣1−1001−1cosxcosxsinx∣∣
∣∣
Now expanding along R1 we get,
Δ=(sinx−cosx)2[1(sinx+cosx)−1(0+cosx)]
=(sinx−cosx)2[sinx+cosx−cosx]
Given that Δ=0
⇒(sinx−cosx)2sinx=0
⇒(sinx−cosx)2=0
⇒sinx−cosx=0
⇒sinx=cosx=1√2
This is possible if x=π4 and sinx=0 if x=0
We know that 1√2 is irrational.
Hence sinx=0 is the only distinct real root,between the interval −π4≤x≤π4
Hence number of distinct real roots=1