wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The number of distinct real roots of the equation

∣ ∣cosxsinxsinxsinxcosxsinxsinxsinxcosx∣ ∣=0,

in the interval [π4,π4], is

Open in App
Solution

∣ ∣cosxsinxsinxsinxcosxsinxsinxsinxcosx∣ ∣=0
C1C1C3,C2C2C3
∣ ∣cosxsinx0sinx0cosxsinxsinxsinxcosxsinxcosxcosx∣ ∣=0
(cosxsinx)2∣ ∣10sinx01sinx11cosx∣ ∣=0
R3R3+R2
(cosxsinx)2∣ ∣10sinx01sinx10cosx+sinx∣ ∣=0
(cosxsinx)2(cosx+2sinx)=0
Therefore, 2sinx+cosx=0 or sinx=cosx
For 2sinx+cosx=0,tanx=12; therefore, one solution in
x[π4,π4]
For sinx=cosx, one solution in x[π4,π4]
Therefore, the total number of solutions is 2.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon