∣∣
∣∣sinxcosxcosxcosxsinxcosxcosxcosxsinx∣∣
∣∣=0
R1→R1+R2+R3⇒(2cosx+sinx)∣∣
∣∣111cosxsinxcosxcosxcosxsinx∣∣
∣∣=0C1→C1−C3C2→C2−C3⇒(2cosx+sinx)×∣∣
∣∣0010sinx−cosxcosxcosx−sinxcosx−sinxsinx∣∣
∣∣=0
⇒(sinx−cosx)2(sinx+2cosx)=0
⇒sinx−cosx=0 or sinx+2cosx=0
tanx=1 or tanx=−2
x=π4 or x=tan−1(−2)
The number of distinct real values of x in the interval [−π4,π4] is 1