Here, secx+tanx=√3
⇒1+sinx=√3cosx
⇒√3cosx−sinx=1
dividing both sides by √a2+b2 i.e √4=2 , we get
⇒√32cosx−12sinx=12
⇒cosπ6cosx−sinπ6sinx=12
⇒cos(x+π6)=12
⇒cos(x+π6)=cosπ3
As 0≤x≤3π
π6≤x+π6≤3π+π6
⇒x+π6=π3,5π3,7π3
⇒x=π6,3π2,13π6
But at x=3π2,tanx and secx is not defined.
Alternate Solution:
secx+tanx=√3⋯(1)
and we know that secx−tanx=1secx+tanx=1√3⋯(2)
From (1)+(2)
secx=2√3
From (1)−(2)
tanx=1√3
tanx,secx both are positive only in 1st quadrant.
So, x=π6,13π6
Hence, the number of solutions is 2.