54cos22x+cos4x+sin4x+cos6x+sin6x=2
⇒54cos22x+(sin2x+cos2x)2−2sin2xcos2x
+(sin2x+cos2x)3−3sin2xcos2x(sin2x+cos2x)=2⇒54cos2x+1−12sin22x+1−34sin22x=2
⇒cos22x=sin22x
⇒tan22x=1
⇒tan2x=±1
⇒2x=nπ±π4,n∈Z
⇒x=(4n±1)π8,n∈z
⇒x=π8,3π8,5π8,7π8,9π8,11π8,13π8,15π8