The number of distinct solutions of the equation 54cos22x+cos4x+sin4x+cos6x+sin6x=2
In the interval [0,2π] is ___
Open in App
Solution
54cos22x+cos4x+sin4x+cos6x+sin6x=2⇒54cos2x+1−12sin22x+1−34sin22x=2⇒54(cos22x−sin22x)=0⇒cos4x=0 ⇒4x=(2n+1)π2 or x=(2n+1)π8
For xϵ[0,2π], n can take values 0 to 7 ∴ 8 solutions.