f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)
=sin2x+1−cos2(x+π3)+cosxcos(x+π3)
=1+sin2x+cos(x+π3)[cosx−cos(x+π3)]
=1+sin2x+cos(x+π3)[2sinπ6sin(x+π6)]
=1+sin2x+12[2cos(x+π3)sin(x+π6)]
=1+sin2x+12[sin(2x+π2)−sinπ6]=1+sin2x+12[cos2x−12]=1+sin2x+12[1−2sin2x−12]
⇒f(x)=54
Since, f(x) is constant function,
hence, its range contains only one element i.e., 54.