The correct option is
C 4
x2+y2+(k−1)x−ky+5=0→(1)∴general equation of circle is,
x62+y2+gx+2fy+c=0centre=(−g,−f),radius=√g2+f2−c
In equation (1)
∴(−g,−f)=[−(k−1)2,k2],c=5radius=√g2+f2−cradius=√(k−1)24+k24−5∴(k−1)24+k24−5>0⇒2k2−2k−19>0→(1)
Given radius≤3∴√(k−1)24+k24−5≤3(k−1)24+k24−5≤9⇒2k2−2k−55≤0→(2)
Solving (1)&(2)2k2−2k−19>0⇒[k−(1+√39)2(k−(1−√392))]>0⇒K∈(−∞,1−√392)∪(1+√392,∞)→(fig1)
2k2−2k−55≤0
⇒[k−(1+√III)2(k−1−√III2))]≤0⇒K∈[1−√III2,1+√III2]→(fig2)
By wavy curve method
∴K∈[1−√III2,1−√III2]∪[1+√392,1+√III2]∴K∈[−4.76,−2.622]∪[3.62,5.76]
∴ Integral values of k possible are −4,−3,−2,4
∴ Only 4 integral values of k are possible.