∣∣∣x2+kx+1x2+x+1∣∣∣<3
−3<x2+kx+1x2+x+1<3
Since, x2+x+1=(x+12)2+34>0,
∴−3(x2+x+1)<x2+kx+1<3(x2+x+1) .................(1)
4x2+(k+3)x+4>0 and 2x2−(k−3)x+2>0 ...................(2)
∵ 4>0 and 2>0
Thus, inequality (1) will be valid.
If (k+3)2−4.4.4<0 or −11<k<5.............. (3)
and the inequality (2) will be valid.
If (k−3)2−4.2.2<0 or −1 .............(4)
The condition (3) and (4) will hold simultaneously if −1<k<5.
k=0,1,2,3,4.
So, 5 values.