The correct option is B 2
If x<2
sin−1(2−x)+cos−1(1−(3−x))
=sin−1(2−x)+cos−1(−2+x)
=sin−1(2−x)+π−cos−1(2−x)
=π2
−pi2+sin−1(2−x)+π+sin−1(2−x)=π2
2sin−1(2−x)=0
x=2 ...(i)
For 2<x<3
sin−1(x−2)+cos−1(−2+x)
=sin−1(x−2)+cos−1(x−2)
=π2
For x>3
sin−1(x−2)+cos−1(4−x)=π2
x−2=4−x
2x=6
x=3
Hence there are in total 2, solutions.