Given: 13−tan2x1+tan2x
We know that,
x≠(2n+1)π2
Now,
13−tan2x1+tan2x=1−tan2x+121+tan2x=1−tan2x1+tan2x+121+tan2x=cos2x+12cos2x=cos2x+6(1+cos2x)=7cos2x+6
As x≠(2n+1)π2, so
cos2x∈(−1,1]
Therefore,
13−tan2x1+tan2x∈(−1,13]
Hence, the number of integral values in the range is 14.