The correct option is A 0
Let n2−4n+46=k2, where k∈I
⇒(n−2)2+42=k2⇒k2−(n−2)2=42⇒(k+n−2)(k−n+2)=a×b, where ab=42
So, possible pairs of (a,b) are (1,42),(2,21),(3,14),(6,7),(7,6),(14,3),(21,2),(42,1)
Let k+n−2=a
and k−n+2=b
⇒n=a−b2+2
For n to be an integer, a−b must be even.
So, no such n is possible.