The correct option is
D 22x2+y2=20x2+8x−20=0x2−2x+10x−20=0x(x−2)+10(x−2)=0(x−2)(x+10)=0∴x=2or−10x2+y2=20x2+8x−20=0x2−2x+10x−20=0x(x−2)+10(x−2)=0(x−2)(x+10)=0∴x=2or−10 is only accepted
in such case only (3,2),(1,2),(2,2),(3,2),(1,1),(2,1),(3,1),(4,1),(1,0),(2,0),(3,0),(4,0),(1,−1),(2,−1),(3,−1),(4,−1),(1,−2),(2,−2),(3,−2),(3,−3),(2,−3)
lie in side the region so 22