x(x+1)(x+2)(x+3)=120⇒(x+1)(x+2)x(x+3)=120⇒(x2+3x+2)(x2+3x)=120
Let x2+3x=y
Then, (y+2)y=120
⇒y2+2y−120=0⇒(y+12)(y−10)=0⇒y=−12,10
When y=−12,
x2+3x=−12⇒x2+3x+12=0D=9−48<0
No real roots
When y=10,
x2+3x=10⇒x2+3x−10=0⇒(x+5)(x−2)=0∴x=−5,2
Hence, the number of integral solutions is 2.