Given: log2(4×3x−6)−log2(9x−6)≥1
For logarithm to be defined:
4×3x−6>0, 9x−6>0
⇒3x>32, 9x>6
Now, log2(4×3x−6)−log2(9x−6)≥1
⇒log2(4×3x−69x−6)≥1
⇒4×3x−69x−6≥2
Assuming y=3x
⇒4y−6y2−6≥2
⇒4y−6>2(y2−6) [9x>6⇒y2>6]
⇒2y−3≥y2−6
⇒y2−2y−3≤0
⇒(y+1)(y−3)≤0
⇒−1≤y≤3
∵3x>32⇒y>32
∴32<y≤3
⇒32<3x≤3
Hence, the only possible integral solution is
3x=3 i.e, x=1