The correct option is A 1
We know that, {x}=x−[x]
∴{x+1}+2x=4[x+1]−6
⇒x+1−[x+1]+2x=4[x+1]−6
⇒3x+1=5[x+1]−6
⇒3x+1=5[x+1]−6
⇒3x=5([x]+1)−6
⇒3x=5[x]−2...(i)
⇒3{[x]+{x}}=5[x]−2
⇒3{x}=2[x]−2
Now, 0≤{x}<1
⇒0≤3{x}<3
⇒0≤2[x]−2<3
⇒1≤[x]<52
⇒[x]=1,2
From Eq. (i) we have
[x]=1⇒x=1
[x]=2⇒x=83
Hence x=1 is the only integral solution.