6tanx+4−4tan2x1+tan2x=3(2tanx1+tan2x)+4(1−tan2x1+tan2x)=3sin2x+4cos2x
Now,
3sin2x+4cos2x∈[−√32+42,√32+42]⇒3sin2x+4cos2x∈[−5,5]
Hence, the number of integral values in the range is 11.
Alternate Solution:
Let t=tanx⇒t∈R, so
y=6tanx+4−4tan2x1+tan2x⇒y=6t+4−4t21+t2⇒t2(y+4)−6t+(y−4)=0
∵t∈R
Δ≥0⇒36−4(y2−16)≥0⇒y2≤25⇒y∈[−5,5]
Hence, the number of integral values in the range is 11.