Given : f(x)=⎧⎨⎩x−3,x<2a,x=2x2+6,x>2
is strictly increasing at x=2
⇒f(2−h)<f(2)<f(2+h), where h→0+ ⋯(i)
Now, f(2−h)=2−h−3=−1−h, where (h→0+) ⋯(ii)
f(2+h)=10+h2+4h, where (h→0+) ⋯(iii)
From (i) ,(ii) and (iii)
⇒−1≤a≤10
∴ number of integral values of a is equal to 12.