Given : f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩5sinxx, x<0a, x=0ex−12x, x>0
is strictly decreasing at x=0
⇒f(0−h)>f(0)>f(0+h) as h→0+
Now,
f(0−h)⇒limh→0−5sin(0−h)0−h=limh→0+5sinhh=5×1=5
(∵limx→0sinxx=1)
f(0+h)=limh→0+eh−12h=12×1=12
(limx→0+ex−1x=1)
⇒5>a>12
∴ there are 4 possible integral values of a.