The given equation is always positive if
1+2m>0 and Δ<0
1+2m>0⇒m>−12 …(1)
Now, Δ<0
⇒4(1+3m)2−16(1+2m)(1+m)<0
⇒1+9m2+6m−4−12m−8m2<0
⇒m2−6m−3<0⇒(m−3)2<12⇒−2√3<m−3<2√3
⇒3−2√3<m<3+2√3
⇒m∈(3−√12, 3+√12) …(2)
From equation (1) and (2), integral value of
m=0,1,2,3,4,5,6
Hence, number of integral values of m is 7.