The correct option is C 10
2|x+2|−|x+5|≤4
Case 1: If x<−5
then −2x−4+x+5≤4
⇒−x+1≤4
⇒x≥−3, which is not possible.
Case 2: If −5≤x<−2
then −2x−4−x−5≤4
⇒−3x−9≤4
⇒x≥−133
∴x∈[−133,−2)
Case 3: If x≥−2
then 2x+4−x−5≤4
⇒x−1≤4
⇒x≤5
∴x∈[−2,5]
From all the above cases, we can conclude that
x∈[−133,−2)∪[−2,5]
i.e., x∈[−133,5]
Integral values of x are −4,−3,−2,−1,0,1,2,3,4,5
Number of integral values of x is 10