1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XIII
Mathematics
Absolute Value Function
The number of...
Question
The number of integral value(s) of
x
satisfying
|
x
|
|
x
−
5
|
=
6
is
Open in App
Solution
|
x
|
|
x
−
5
|
=
6
⇒
|
x
(
x
−
5
)
|
=
6
∵
|
a
|
|
b
|
=
|
a
b
|
⇒
x
(
x
−
5
)
=
±
6
⇒
x
2
−
5
x
=
±
6
Case 1:
⇒
x
2
−
5
x
=
6
⇒
x
2
−
5
x
−
6
=
0
⇒
x
2
−
6
x
+
x
−
6
=
0
⇒
(
x
−
6
)
(
x
+
1
)
=
0
∴
x
=
−
1
,
6
Case 2:
⇒
x
2
−
5
x
=
−
6
⇒
x
2
−
5
x
+
6
=
0
⇒
x
2
−
2
x
−
3
x
+
6
=
0
⇒
(
x
−
2
)
(
x
−
3
)
=
0
∴
x
=
2
,
3
Hence, the number of integral solutions of the equation is
4
.
Suggest Corrections
0
Similar questions
Q.
The number of integral value(s) of
x
satisfying
|
x
|
|
x
−
5
|
=
6
is
Q.
The number of integral values of x satisfying the linear inequality |x|+|x+1| < 5 is
.
Q.
The number of integral values of x satisfying the linear inequality |x|+|x+1| < 5 is
.