1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Inequality
The number of...
Question
The number of integral value(s) of
x
that satisfy the inequality
(
log
0.5
x
)
2
+
log
0.5
x
−
2
≤
0
is
Open in App
Solution
(
log
0.5
x
)
2
+
log
0.5
x
−
2
≤
0
log
function is defined
x
>
0
∵
log
0.5
x
=
−
log
2
x
Let
log
2
x
=
z
⇒
z
2
−
z
−
2
≤
0
⇒
(
z
−
2
)
(
z
+
1
)
≤
0
⇒
z
∈
[
−
1
,
2
]
∴
log
2
x
∈
[
−
1
,
2
]
⇒
x
∈
[
1
2
,
4
]
∴
x
=
1
,
2
,
3
,
4
Suggest Corrections
6
Similar questions
Q.
The number of integral value(s) of
x
that satisfying the inequality
(
2
−
x
2
)
3
(
x
−
3
)
5
(
x
+
1
)
(
x
2
−
3
x
−
4
)
≥
0
is
Q.
The number of integral values of
x
that satisfy the inequality
4
x
2
(
1
−
√
2
x
+
1
)
2
<
2
x
+
9
, is
Q.
Solve the following inequality:
log
0.5
(
x
2
−
3
x
+
4
)
−
log
0.5
(
x
−
1
)
<
−
1
Q.
The number of integral value(s) of x satisfying the inequality
√
x
−
1
x
−
2
≤
0
is