1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Term Independent of X
The number of...
Question
The number of integral value(s) of
x
that satisfying the inequality
(
2
−
x
2
)
3
(
x
−
3
)
5
(
x
+
1
)
(
x
2
−
3
x
−
4
)
≥
0
is
Open in App
Solution
(
2
−
x
2
)
3
(
x
−
3
)
5
(
x
+
1
)
(
x
2
−
3
x
−
4
)
≥
0
⇒
(
x
2
−
2
)
3
(
x
−
3
)
5
(
x
+
1
)
(
x
+
1
)
(
x
−
4
)
≤
0
⇒
(
x
+
√
2
)
3
(
x
−
√
2
)
3
(
x
−
3
)
5
(
x
+
1
)
2
(
x
−
4
)
≤
0
⇒
x
∈
[
−
√
2
,
−
1
)
∪
(
−
1
,
√
2
]
∪
[
3
,
4
)
Integers are
0
,
1
,
3
Suggest Corrections
7
Similar questions
Q.
If
x
satisfies the inequality
(
x
2
−
x
−
1
)
(
x
2
−
x
−
7
)
<
−
5
,
then which of the following statements is (are) TRUE?
Q.
The number of integral values of
x
,
satisfying the inequality
(
|
x
|
+
3
)
(
4
−
|
x
|
)
x
2
−
|
x
|
>
0
is
Q.
Sum of all integral values of
x
satisfying the inequality
3
5
2
log
3
(
12
−
3
x
)
−
3
log
2
x
>
32
is
Q.
Sum of all integral values of
x
satisfying the inequality
(
3
5
2
log
3
(
12
−
3
x
)
)
−
(
3
log
2
x
)
>
32
is
Q.
The number of integral value(s) of
x
that satisfying the inequality
(
2
−
x
2
)
3
(
x
−
3
)
5
(
x
+
1
)
(
x
2
−
3
x
−
4
)
≥
0
is
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Visualising the Coefficients
MATHEMATICS
Watch in App
Explore more
Term Independent of X
Standard XI Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app