(y2−5y+3)(x2+x+1)<2x, ∀ x∈R
⇒y2−5y+3<2xx2+x+1(∵x2+x+1>0 ∀x∈R)
L.H.S. must be less than the least value of R.H.S.
Now, finding the least value of R.H.S.
Let 2xx2+x+1=p
⇒px2+(p−2)x+p=0
As x∈R, so
D≥0⇒(p−2)2−4p2≥0⇒−3p2−4p+4≥0⇒3p2+4p−4≤0⇒3p2+6p−2p−4≤0⇒(3p−2)(p+2)≤0⇒p∈[−2,23]
Therefore, the least value of R.H.S. is −2, so
y2−5y+3<−2⇒y2−5y+5<0∴y∈(5−√52,5+√52)
Hence, the possible intergral values are 2,3