y=ax2−7x+55x2−7x+a⇒(5y−a)x2−7(y−1)x+(ay−5)=0
As x is real,
D≥0⇒49(y−1)2−4(5y−a)(ay−5)≥0⇒(49−20a)y2+2(1+2a2)y+(49−20a)≥0, ∀ y∈R
So, 49−20a>0⇒a<4920
and D≤0
⇒4(1+2a2)2−4(49−20a)2≤0⇒(a2−10a+25)(a2+10a−24)≤0⇒(a−5)2(a+12)(a−2)≤0⇒a∈[−12,2]
But when a=−12
y=−12x2−7x+55x2−7x−12⇒y=−(12x−5)(x+1)(5x−12)(x+1)=−(12x−55x−12)
When a=2
y=2x2−7x+55x2−7x+2⇒y=(2x−5)(x−1)(5x−2)(x−1)=2x−55x−2
For a=−12,2, y≠R
Therefore, a∈(−12,2)
Hence, the number of integral values of a is 13