The correct option is C 2
4ax2+5x+a=0
|x1−x2|<1
⇒∣∣∣√25−16a24a∣∣∣<1
⇒√25−16a2<|4a|
⇒a2>2532
⇒a∈(−∞,−54√2)∪(54√2,∞) ...(1)
Also, the roots are real and distinct.
So, 25−16a2>0
⇒a2<2516
⇒a∈(−54,54) ...(2)
From (1) and (2),
a∈(−54,−54√2)∪(54√2,54)
Possible integral values of a are −1,1
Hence, the number of integral values of a is 2