The correct option is C 3
Let y=x2−2mx+m2−1
For roots to lie between -2 and 4,
We must have,
(i) D≥0⇒4m2−4(m2−1)=4>∀m∈R
(ii)−2<−b2a<4⇒−2<m<4
(iii)y(−2)>0⇒m2+4m+3>0⇒(m+1)(m+3)>0⇒m<−3,m>−1
(iv)y(4)>0⇒m2−8m+15>0⇒(m−5)(m−3)>0⇒m>5,m<3
Considering all the cases, permissible integral values of m are 0,1,2.