The correct option is A 2
Solving given lines for the x-coordinate of the point of intersection
3x+4(mx+1)= 9
or (3+4m)x=5 or x=53+4m
For x to be an integer, 3+4m should be a divisor of 5, i.e., 1,−1,5,or−5. Hence,
3+4m=1 or m=−12(not an integer)3+4m=−1 or m=−1(integer)3+4m=5 or m=12(not an integer)3+4m=−5 or m=−2(integer)
Hence, there are two integral values of m.