The correct option is C 6
5cosx+4sinx=2p+3
For the equation to have solution, 2p+3 should lie in the range of 5cosx+4sinx
Now, −√52+42≤5cosx+4sinx≤√52+42
⇒−√52+42≤2p+3≤√52+42⇒−√41≤2p+3≤√41⇒−√41−3≤2p≤√41−3⇒−√41−32≤p≤√41−32
Hence, the integral values of p are {−4,−3,−2,−1,0,1}