The number of integral values of x satisfying the equation tan−1(3x)+tan−1(5x)=tan−1(7x)+tan−1(2x) is
Open in App
Solution
We know, tan−1x+tan−1y=tan−1(x+y1−xy) Applying the above expression, the above question simplifies to 5x+3x1−15x2=7x+2x1−14x2 8x(1−14x2)=9x(1−15x2) 8x−112x3=9x−135x3 23x3−x=0 x(23x2−1)=0 x=0 and x=±1√23 Hence only one integral solution at x=0.