Given that |x|+|x+1| < 5.
Now, (x|=(x, if x≥0−x if x<0(x+1|=(x+1, if x≥−1−x−1 if x<−1(x|+(x+1|=⎛⎜⎝x+x+1=2x+1, if x≥0−x+x+1=1, if −1< x<0−x−x−1=−2x−1, if x≤−1Now, (x|+(x+1|<5Case I: If x≥0(x|+(x+1|=2x+12x+1<5⇒x<2⇒x=0, 1Case II: If −1< x<0(x|+(x+1|=1 which is less than 5.No integral value of x in this interval.Case III: If x≤−1(x|+(x+1|=−2x−1−2x−1<5⇒−2x<6⇒x>−3∴x=−2, −1
Therefore, the integral values of x satisfying the given linear inequation is -2, -1, 0, 1.
Number of values = 4