The correct option is A 11
Given: −5(x−1)+3>3x−4
⇒−5x+5+3>3x−4
⇒−5x+8>3x−4
⇒−5x+8+5x>3x−4+5x [add 5x on both the sides of the inequality]
⇒8>8x−4
⇒8+4>8x−4+4 [add 4 on both the sides of the inequality]
⇒12>8x
⇒128>8x8 [divide by 8 on both the sides of the inequality]
⇒32>x
⇒x∈(−∞,32)⇒x∈(−∞,1.5)
Since, x>−10
Integral values of x satisfying the conditions are x=−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1.
∴ The number of integral values of x is 11.