The number of integral values of y for which the chord of the circle x2+y2=125 passing through the point P(8,y) gets bisected at the point P(8,y) and has integral slope is
A
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B6 Equation of chord to the given circle at point P(8,y) as mid point is given by, T=S1⇒8x+y.y=125 Now slope of this curve is, m=−8y Now for integral slope, integral values of y possible is, −1,−2,−4,4,2,1 Hence total 6 integral values of y are possible for the required condition.