Given y=x2−ax+11x2−5x+4
Finding the common root, we get
x2−ax+11=0x2−5x+4=0⇒(5−a)x+7=0
Let a≠5, then
⇒x=7a−5
Now, f(x)=x2−ax+11
f(7a−5)<0⇒49(a−5)2−7a(a−5)+11<0⇒49−7a(a−5)+11(a−5)2<0(∵a≠5)⇒4a2−75a+324a<0⇒4a2−48a−27a+324a<0⇒(a−12)(4a−27)<0⇒a∈(274,12)∴a=7,8,9,10,11
When a=5, we get
y=x2−5x+11x2−5x+4⇒y=1+7x2−5x+4
Which cannot take all real values
Hence, there are 5 possible values of a.