Given x−3<√x+27 to be defined
x+27≥0⇒x≥−27⋯(1)
√x+27>x−3
Now √x+27≥0
∴If x−3<0⇒x<3
⇒x∈[−27,3)⋯(2)
If x−3≥0⇒x≥3
√x+27>x−3
squaring both the sides
⇒x+27>(x−3)2⇒x2−7x−18<0⇒(x+2)(x−9)<0⇒x∈(−2,9)
but x≥3
∴x∈[3,9)⋯(3)
From (1) and (2)
x∈[−27,9)
Hence there are total 36 integral values