sin[2cos−1{cot(2tan−1x)}]=0⇒2cos−1{cot(2tan−1x)}=nπ, n∈Z⇒cot(2tan−1x)=cosnπ2
We know that,
cosnπ2=±1 or 0
Case 1:
cot(2tan−1x)=±1
We know that,
tan−1x∈(−π2,π2)⇒2tan−1x∈(−π,π)
Now,
cot(2tan−1x)=±1
⇒2tan−1x=π4,3π4,−π4,−3π4⇒x=±tanπ8,±tan3π8
Case 2:
cot(2tan−1x)=0⇒2tan−1x=±π2⇒x=±tan(π4)⇒x=±1
Hence, four non-integral values of x are possible.