The correct option is B (n+1)(n+2)(n+3)6
a+b+c+d=n
Now nϵN and a,b,c,dϵZ+
Consider n=1
We get
a+b+c+d=1
a=0,b=0,c=0,d=1
a=0,b=0,c=1,d=0
a=0,b=1,c=0,d=0
a=1,b=0,c=0,d=0
Hence we have 4 solutions
=4C3 solutions
=1+3C3 solutions
Let n=2
we get
a=0,b=0,c=0,d=2
a=0,b=0,c=1,d=1
a=0,b=1,c=0,d=1
a=0,b=0,c=2,d=0
a=0,b=1,c=1,d=0
a=0,b=2,c=0,d=0
a=1,b=1,c=0,d=0
a=2,b=0,c=0,d=0
a=1,b=0,c=0,d=1
a=1,b=0,c=1,d=0
Hence total 10 solutions
=5C3
=2+3C3
Hence for a+b+c+d=n we will have n+3C3 solutions.
=(n+3)(n+2)(n+1)3!
=(n+3)(n+2)(n+1)6