The correct option is C 121
This is equivalent to finding the coefficient of x20 in (1+x+x2+x3+...).(1+x+x2+x3+...).(1+x2+x4+x6+...)=(1−x)−2.(1+x2+x4+x6+...)=(1+2x+3x2+4x3+...21x20).(1+x2+x4+x6+...+x20)
Thus, the answer is =1+3+5+7+...+21=112=121
Hence, (D) is correct.