The correct option is C 0
3y=[sinx+[sinx+[sinx]]]⇒3y=3[sinx]⇒y=[sinx]⋯(1)
Also,
[y+[y]]=2cosx⇒2[y]=2cosx⇒[y]=cosx
Using equation (1), we get
[sinx]=cosx
When cosx=−1⇒x=(2n+1)π
But sin(2n+1)π=0, so no solution
When ⇒cosx=0⇒x=(2n+1)π2
But sin((2n+1)π2)=±1
So, no solution
When cosx=1⇒x=2nπ
But sin2nπ=0, so no solution
Hence, there is no pair of (x,y).